Back to Projects Compliance

Medical Doc Parser

Diagnosis extraction and ICD-10 coding from medical documents.

The Problem

Medical professionals spend significant time manually extracting diagnoses from documents and coding them to ICD-10 standards. This process is error-prone and delays clinical workflows.

The Solution

An NLP-powered parser that extracts diagnoses from medical documents and automatically maps them to ICD-10 codes. Supports multiple document formats and integrates with clinical systems.

Architecture

%%{init: {'theme': 'dark', 'themeVariables': { 'fontFamily': 'Inter', 'secondaryColor': '#1e293b', 'primaryColor': '#3b82f6', 'primaryBorderColor': '#60a5fa' }}}%% graph TB subgraph Input ["Input"] A["Medical Document<br/>(PDF/scan)"] end subgraph Processing ["Processing Pipeline"] A --> B["OCR Engine<br/>>95% accuracy"] B --> C["Document Classification"] C --> D["Diagnosis Extraction<br/>(NLP multilingual)"] D --> E["ICD-10 Mapping<br/>>90% accuracy"] E --> F["Anonymization<br/>100% verified"] end subgraph Output ["Output"] F --> G["Structured Data<br/>+ ICD-10 Codes"] end classDef default fill:#0f172a,stroke:#334155,color:#fff,stroke-width:1px; classDef agent fill:#0f172a,stroke:#3b82f6,color:#fff; classDef process fill:#0f172a,stroke:#334155,color:#fff; class D,E agent; class B,C,F process;
AI Agent
Process Step

Tags

TypeScriptNLPICD-10

Outcomes

  • >95% OCR accuracy, >90% correct ICD-10 mapping
  • Multilingual support: Spanish, Catalan, Galician
  • Processing under 2 min/doc, deployed for Tirea