Back to Projects AI Pipelines

Data Source Automator

End-to-end pipeline: research → specifications → code generation with human review gates.

The Problem

Data engineering teams waste weeks researching data sources, writing specifications, and building extraction pipelines. The research phase alone can take days for complex APIs or scraping requirements.

The Solution

A multi-agent pipeline that automates the entire data sourcing workflow: research agents explore extraction methods, spec agents generate data models and requirements, and coding agents build microservices—all with human review gates.

Architecture

%%{init: {'theme': 'dark', 'themeVariables': { 'fontFamily': 'Inter', 'secondaryColor': '#1e293b', 'primaryColor': '#3b82f6', 'primaryBorderColor': '#60a5fa' }}}%% graph TB subgraph Research ["Research Phase"] A["Supervisor Agent"] --> B["API Researcher"] A --> B2["Download Analyst"] A --> C["Scraping Analyst"] B --> D["Method Selector"] B2 --> D C --> D end subgraph Spec ["Specification Phase"] D --> E["Data Model Gen"] E --> F["Requirements Writer"] F --> G["Human Review"] end subgraph Impl ["Implementation Phase"] G --> H["Tech Spec Agent"] H --> I["Coding Agent"] I --> J["Testing Agent"] J --> K["Human Review"] end classDef default fill:#0f172a,stroke:#334155,color:#fff,stroke-width:1px; classDef review fill:#3b0764,stroke:#a855f7,stroke-width:2px; classDef agent fill:#0f172a,stroke:#3b82f6,color:#fff; class G,K review; class A,B,B2,C,H,I,J agent;
AI Agent
Process Step
Human Review

Tags

PythonMulti-AgentHITL

Outcomes

  • 70% reduction in research-to-spec time
  • Automated technical specification generation
  • Human-in-the-loop quality gates at every phase